↳ ITRS
↳ ITRStoIDPProof
z
cond2(FALSE, x, y) → +@z(1@z, diff(+@z(x, 1@z), y))
cond1(TRUE, x, y) → 0@z
cond2(TRUE, x, y) → +@z(1@z, diff(x, +@z(y, 1@z)))
diff(x, y) → cond1(=@z(x, y), x, y)
cond1(FALSE, x, y) → cond2(>@z(x, y), x, y)
cond2(FALSE, x0, x1)
cond1(TRUE, x0, x1)
cond2(TRUE, x0, x1)
diff(x0, x1)
cond1(FALSE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
cond2(FALSE, x, y) → +@z(1@z, diff(+@z(x, 1@z), y))
cond1(TRUE, x, y) → 0@z
cond2(TRUE, x, y) → +@z(1@z, diff(x, +@z(y, 1@z)))
diff(x, y) → cond1(=@z(x, y), x, y)
cond1(FALSE, x, y) → cond2(>@z(x, y), x, y)
(0) -> (2), if ((y[0] →* y[2])∧(+@z(x[0], 1@z) →* x[2]))
(1) -> (0), if ((x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], y[1]) →* FALSE))
(1) -> (3), if ((x[1] →* x[3])∧(y[1] →* y[3])∧(>@z(x[1], y[1]) →* TRUE))
(2) -> (1), if ((x[2] →* x[1])∧(y[2] →* y[1])∧(=@z(x[2], y[2]) →* FALSE))
(3) -> (2), if ((+@z(y[3], 1@z) →* y[2])∧(x[3] →* x[2]))
cond2(FALSE, x0, x1)
cond1(TRUE, x0, x1)
cond2(TRUE, x0, x1)
diff(x0, x1)
cond1(FALSE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (2), if ((y[0] →* y[2])∧(+@z(x[0], 1@z) →* x[2]))
(1) -> (0), if ((x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], y[1]) →* FALSE))
(1) -> (3), if ((x[1] →* x[3])∧(y[1] →* y[3])∧(>@z(x[1], y[1]) →* TRUE))
(2) -> (1), if ((x[2] →* x[1])∧(y[2] →* y[1])∧(=@z(x[2], y[2]) →* FALSE))
(3) -> (2), if ((+@z(y[3], 1@z) →* y[2])∧(x[3] →* x[2]))
cond2(FALSE, x0, x1)
cond1(TRUE, x0, x1)
cond2(TRUE, x0, x1)
diff(x0, x1)
cond1(FALSE, x0, x1)
(1) (y[2]=y[1]∧x[2]=x[1]∧=@z(x[2], y[2])=FALSE∧y[1]=y[0]∧x[1]=x[0]∧>@z(x[1], y[1])=FALSE ⇒ COND2(FALSE, x[0], y[0])≥NonInfC∧COND2(FALSE, x[0], y[0])≥DIFF(+@z(x[0], 1@z), y[0])∧(UIncreasing(DIFF(+@z(x[0], 1@z), y[0])), ≥))
(2) (>@z(x[2], y[2])=FALSE∧<@z(x[2], y[2])=TRUE ⇒ COND2(FALSE, x[2], y[2])≥NonInfC∧COND2(FALSE, x[2], y[2])≥DIFF(+@z(x[2], 1@z), y[2])∧(UIncreasing(DIFF(+@z(x[0], 1@z), y[0])), ≥))
(3) (y[2] + (-1)x[2] ≥ 0∧y[2] + -1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(DIFF(+@z(x[0], 1@z), y[0])), ≥)∧-1 + (-1)Bound + max{(-1)x[2] + y[2], x[2] + (-1)y[2]} ≥ 0∧-1 + max{(-1)x[2] + y[2], x[2] + (-1)y[2]} + (-1)max{-1 + (-1)x[2] + y[2], 1 + x[2] + (-1)y[2]} ≥ 0)
(5) (y[2] + (-1)x[2] ≥ 0∧-1 + x[2] + (-1)y[2] ≥ 0 ⇒ (UIncreasing(DIFF(+@z(x[0], 1@z), y[0])), ≥)∧-1 + (-1)Bound + max{(-1)x[2] + y[2], x[2] + (-1)y[2]} ≥ 0∧-1 + max{(-1)x[2] + y[2], x[2] + (-1)y[2]} + (-1)max{-1 + (-1)x[2] + y[2], 1 + x[2] + (-1)y[2]} ≥ 0)
(6) (y[2] + (-1)x[2] ≥ 0∧y[2] + -1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(DIFF(+@z(x[0], 1@z), y[0])), ≥)∧-1 + (-1)Bound + max{(-1)x[2] + y[2], x[2] + (-1)y[2]} ≥ 0∧-1 + max{(-1)x[2] + y[2], x[2] + (-1)y[2]} + (-1)max{-1 + (-1)x[2] + y[2], 1 + x[2] + (-1)y[2]} ≥ 0)
(7) ((-2)x[2] + (2)y[2] ≥ 0∧y[2] + -1 + (-1)x[2] ≥ 0∧-2 + (-2)x[2] + (2)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ -1 + (-1)Bound + (-1)x[2] + y[2] ≥ 0∧0 ≥ 0∧(UIncreasing(DIFF(+@z(x[0], 1@z), y[0])), ≥))
(8) ((2)x[2] ≥ 0∧-1 + x[2] ≥ 0∧-2 + (2)x[2] ≥ 0∧x[2] ≥ 0 ⇒ -1 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(DIFF(+@z(x[0], 1@z), y[0])), ≥))
(9) (2 + (2)x[2] ≥ 0∧x[2] ≥ 0∧(2)x[2] ≥ 0∧1 + x[2] ≥ 0 ⇒ (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(DIFF(+@z(x[0], 1@z), y[0])), ≥))
(10) (2 + (2)x[2] ≥ 0∧x[2] ≥ 0∧(2)x[2] ≥ 0∧1 + x[2] ≥ 0∧y[2] ≥ 0 ⇒ (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(DIFF(+@z(x[0], 1@z), y[0])), ≥))
(11) (2 + (2)x[2] ≥ 0∧x[2] ≥ 0∧(2)x[2] ≥ 0∧1 + x[2] ≥ 0∧y[2] ≥ 0 ⇒ (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(DIFF(+@z(x[0], 1@z), y[0])), ≥))
(12) (COND1(FALSE, x[1], y[1])≥NonInfC∧COND1(FALSE, x[1], y[1])≥COND2(>@z(x[1], y[1]), x[1], y[1])∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(13) ((UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) ((UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(15) ((-2)x[1] + (2)y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(16) (-1 + (2)x[1] + (-2)y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(17) ((2)x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(18) (-1 + (2)x[1] + (-2)y[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(19) (-1 + (-2)x[1] + (-2)y[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(20) ((2)x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(21) ((2)x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(22) (-1 + (2)x[1] + (-2)y[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(23) (-1 + (2)x[1] + (2)y[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(24) (-1 + (-2)x[1] + (2)y[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(25) (DIFF(x[2], y[2])≥NonInfC∧DIFF(x[2], y[2])≥COND1(=@z(x[2], y[2]), x[2], y[2])∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥))
(26) ((UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0∧max{(-1)x[2] + y[2], x[2] + (-1)y[2]} + (-1)max{(-1)x[2] + y[2], x[2] + (-1)y[2]} ≥ 0)
(27) ((UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0∧max{(-1)x[2] + y[2], x[2] + (-1)y[2]} + (-1)max{(-1)x[2] + y[2], x[2] + (-1)y[2]} ≥ 0)
(28) ((-2)x[2] + (2)y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(29) (-1 + (2)x[2] + (-2)y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(30) ((2)x[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(31) (-1 + (2)x[2] + (-2)y[2] ≥ 0∧x[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(32) (-1 + (-2)x[2] + (-2)y[2] ≥ 0∧x[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(33) ((2)x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(34) ((2)x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(35) (-1 + (2)x[2] + (-2)y[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(36) (-1 + (2)x[2] + (2)y[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(37) (-1 + (-2)x[2] + (2)y[2] ≥ 0∧x[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(38) (y[2]=y[1]∧>@z(x[1], y[1])=TRUE∧y[1]=y[3]∧x[2]=x[1]∧=@z(x[2], y[2])=FALSE∧x[1]=x[3] ⇒ COND2(TRUE, x[3], y[3])≥NonInfC∧COND2(TRUE, x[3], y[3])≥DIFF(x[3], +@z(y[3], 1@z))∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥))
(39) (>@z(x[2], y[2])=TRUE∧<@z(x[2], y[2])=TRUE ⇒ COND2(TRUE, x[2], y[2])≥NonInfC∧COND2(TRUE, x[2], y[2])≥DIFF(x[2], +@z(y[2], 1@z))∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥))
(40) (-1 + x[2] + (-1)y[2] ≥ 0∧y[2] + -1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧0 ≥ 0∧max{(-1)x[2] + y[2], x[2] + (-1)y[2]} + (-1)max{1 + (-1)x[2] + y[2], -1 + x[2] + (-1)y[2]} ≥ 0)
(42) (-1 + x[2] + (-1)y[2] ≥ 0 ⇒ (UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧0 ≥ 0∧max{(-1)x[2] + y[2], x[2] + (-1)y[2]} + (-1)max{1 + (-1)x[2] + y[2], -1 + x[2] + (-1)y[2]} ≥ 0)
(43) (-1 + x[2] + (-1)y[2] ≥ 0∧y[2] + -1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧0 ≥ 0∧max{(-1)x[2] + y[2], x[2] + (-1)y[2]} + (-1)max{1 + (-1)x[2] + y[2], -1 + x[2] + (-1)y[2]} ≥ 0)
(44) (2 + (-2)x[2] + (2)y[2] ≥ 0∧-1 + (2)x[2] + (-2)y[2] ≥ 0∧-1 + x[2] + (-1)y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧-1 + (2)x[2] + (-2)y[2] ≥ 0)
(45) (-1 + (2)x[2] + (-2)y[2] ≥ 0∧-1 + x[2] + (-1)y[2] ≥ 0∧-3 + (2)x[2] + (-2)y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧1 ≥ 0)
(46) ((-2)x[2] ≥ 0∧1 + (2)x[2] ≥ 0∧x[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧1 + (2)x[2] ≥ 0)
(47) (1 + (2)x[2] ≥ 0∧x[2] ≥ 0∧-1 + (2)x[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧1 ≥ 0)
(48) (0 ≥ 0∧1 ≥ 0∧0 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧1 ≥ 0)
(49) (0 ≥ 0∧1 ≥ 0∧0 ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧1 ≥ 0)
(50) (0 ≥ 0∧1 ≥ 0∧0 ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧1 ≥ 0)
(51) (1 + (2)x[2] ≥ 0∧x[2] ≥ 0∧-1 + (2)x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧1 ≥ 0)
(52) (1 + (2)x[2] ≥ 0∧x[2] ≥ 0∧-1 + (2)x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧1 ≥ 0)
POL(DIFF(x1, x2)) = -1 + max{(-1)x1 + x2, x1 + (-1)x2}
POL(=@z(x1, x2)) = -1
POL(TRUE) = -1
POL(COND2(x1, x2, x3)) = -1 + max{(-1)x2 + x3, x2 + (-1)x3}
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(COND1(x1, x2, x3)) = -1 + max{(-1)x2 + x3, x2 + (-1)x3}
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND2(FALSE, x[0], y[0]) → DIFF(+@z(x[0], 1@z), y[0])
COND2(FALSE, x[0], y[0]) → DIFF(+@z(x[0], 1@z), y[0])
COND1(FALSE, x[1], y[1]) → COND2(>@z(x[1], y[1]), x[1], y[1])
DIFF(x[2], y[2]) → COND1(=@z(x[2], y[2]), x[2], y[2])
COND2(TRUE, x[3], y[3]) → DIFF(x[3], +@z(y[3], 1@z))
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDPNonInfProof
z
(2) -> (1), if ((x[2] →* x[1])∧(y[2] →* y[1])∧(=@z(x[2], y[2]) →* FALSE))
(3) -> (2), if ((+@z(y[3], 1@z) →* y[2])∧(x[3] →* x[2]))
(1) -> (3), if ((x[1] →* x[3])∧(y[1] →* y[3])∧(>@z(x[1], y[1]) →* TRUE))
cond2(FALSE, x0, x1)
cond1(TRUE, x0, x1)
cond2(TRUE, x0, x1)
diff(x0, x1)
cond1(FALSE, x0, x1)
(1) (COND1(FALSE, x[1], y[1])≥NonInfC∧COND1(FALSE, x[1], y[1])≥COND2(>@z(x[1], y[1]), x[1], y[1])∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(2) ((UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(5) (0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND2(>@z(x[1], y[1]), x[1], y[1])), ≥))
(6) (DIFF(x[2], y[2])≥NonInfC∧DIFF(x[2], y[2])≥COND1(=@z(x[2], y[2]), x[2], y[2])∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥))
(7) ((UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(8) ((UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(9) (0 ≥ 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 ≥ 0)
(10) (0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND1(=@z(x[2], y[2]), x[2], y[2])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(11) (>@z(x[1], y[1])=TRUE∧y[1]=y[3]∧x[1]=x[3]∧x[3]=x[2]∧+@z(y[3], 1@z)=y[2] ⇒ COND2(TRUE, x[3], y[3])≥NonInfC∧COND2(TRUE, x[3], y[3])≥DIFF(x[3], +@z(y[3], 1@z))∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥))
(12) (>@z(x[1], y[1])=TRUE ⇒ COND2(TRUE, x[1], y[1])≥NonInfC∧COND2(TRUE, x[1], y[1])≥DIFF(x[1], +@z(y[1], 1@z))∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥))
(13) (x[1] + -1 + (-1)y[1] ≥ 0 ⇒ (UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧-1 + (-1)Bound + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(14) (x[1] + -1 + (-1)y[1] ≥ 0 ⇒ (UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧-1 + (-1)Bound + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(15) (x[1] + -1 + (-1)y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧-1 + (-1)Bound + (-1)y[1] + x[1] ≥ 0)
(16) (x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0)
(17) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0)
(18) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(DIFF(x[3], +@z(y[3], 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0)
POL(DIFF(x1, x2)) = (-1)x2 + x1
POL(=@z(x1, x2)) = 1
POL(TRUE) = -1
POL(COND2(x1, x2, x3)) = -1 + (-1)x3 + x2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 2
POL(1@z) = 1
POL(COND1(x1, x2, x3)) = (-1)x3 + x2
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND1(FALSE, x[1], y[1]) → COND2(>@z(x[1], y[1]), x[1], y[1])
COND2(TRUE, x[3], y[3]) → DIFF(x[3], +@z(y[3], 1@z))
DIFF(x[2], y[2]) → COND1(=@z(x[2], y[2]), x[2], y[2])
COND2(TRUE, x[3], y[3]) → DIFF(x[3], +@z(y[3], 1@z))
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(2) -> (1), if ((x[2] →* x[1])∧(y[2] →* y[1])∧(=@z(x[2], y[2]) →* FALSE))
cond2(FALSE, x0, x1)
cond1(TRUE, x0, x1)
cond2(TRUE, x0, x1)
diff(x0, x1)
cond1(FALSE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(3) -> (2), if ((+@z(y[3], 1@z) →* y[2])∧(x[3] →* x[2]))
cond2(FALSE, x0, x1)
cond1(TRUE, x0, x1)
cond2(TRUE, x0, x1)
diff(x0, x1)
cond1(FALSE, x0, x1)